New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Type I Interferon Receptor Subunit 1 Deletion Attenuates Experimental Abdominal Aortic Aneurysm Formation.
Type I Interferon Receptor Subunit 1 Deletion Attenuates Experimental Abdominal Aortic Aneurysm Formation. Biomolecules Shoji, T., Guo, J., Ge, Y., Li, Y., Li, G., Ikezoe, T., Wang, W., Zheng, X., Zhao, S., Fujimura, N., Huang, J., Xu, B., Dalman, R. L. 2022; 12 (10)Abstract
OBJECTIVE: Type I interferon receptor signaling contributes to several autoimmune and vascular diseases such as lupus, atherosclerosis and stroke. The purpose of this study was to assess the influence of type I interferon receptor deficiency on the formation and progression of experimental abdominal aortic aneurysms (AAAs).METHODS: AAAs were induced in type I interferon receptor subunit 1 (IFNAR1)-deficient and wild type control male mice via intra-infrarenal aortic infusion of porcine pancreatic elastase. Immunostaining for IFNAR1 was evaluated in experimental and clinical aneurysmal abdominal aortae. The initiation and progression of experimental AAAs were assessed via ultrasound imaging prior to (day 0) and days 3, 7 and 14 following elastase infusion. Aneurysmal histopathology was analyzed at sacrifice.RESULTS: Increased aortic medial and adventitial IFNAR1 expression was present in both clinical AAAs harvested at surgery and experimental AAAs. Following AAA induction, wild type mice experienced progressive, time-dependent infrarenal aortic enlargement. This progression was substantially attenuated in IFNAR1-deficient mice. On histological analyses, medial elastin degradation, smooth muscle cell depletion, leukocyte accumulation and neoangiogenesis were markedly diminished in IFNAR1-deficient mice in comparison to wild type mice.CONCLUSION: IFNAR1 deficiency limited experimental AAA progression in response to intra-aortic elastase infusion. Combined with clinical observations, these results suggest an important role for IFNAR1 activity in AAA pathogenesis.
View details for DOI 10.3390/biom12101541
View details for PubMedID 36291750