Divergent clonal differentiation trajectories of T cell exhaustion. Nature immunology Daniel, B., Yost, K. E., Hsiung, S., Sandor, K., Xia, Y., Qi, Y., Hiam-Galvez, K. J., Black, M., J Raposo, C., Shi, Q., Meier, S. L., Belk, J. A., Giles, J. R., Wherry, E. J., Chang, H. Y., Egawa, T., Satpathy, A. T. 2022

Abstract

Chronic antigen exposure during viral infection or cancer promotes an exhausted T cell (Tex) state with reduced effector function. However, whether all antigen-specific T cell clones follow the same Tex differentiation trajectory remains unclear. Here, we generate a single-cell multiomic atlas of T cell exhaustion in murine chronic viral infection that redefines Tex phenotypic diversity, including two late-stage Tex subsets with either a terminal exhaustion (Texterm) or a killer cell lectin-like receptor-expressing cytotoxic (TexKLR) phenotype. We use paired single-cell RNA and T cell receptor sequencing to uncover clonal differentiation trajectories of Texterm-biased, TexKLR-biased or divergent clones that acquire both phenotypes. We show that high T cell receptor signaling avidity correlates with Texterm, whereas low avidity correlates with effector-like TexKLR fate. Finally, we identify similar clonal differentiation trajectories in human tumor-infiltrating lymphocytes. These findings reveal clonal heterogeneity in the T cell response to chronic antigen that influences Tex fates and persistence.

View details for DOI 10.1038/s41590-022-01337-5

View details for PubMedID 36289450