New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Curative islet and hematopoietic cell transplantation in diabetic mice without toxic bone marrow conditioning.
Curative islet and hematopoietic cell transplantation in diabetic mice without toxic bone marrow conditioning. Cell reports Chang, C. A., Bhagchandani, P., Poyser, J., Velasco, B. J., Zhao, W., Kwon, H., Meyer, E., Shizuru, J. A., Kim, S. K. 2022; 41 (6): 111615Abstract
Mixed hematopoietic chimerism can promote immune tolerance of donor-matched transplanted tissues, like pancreatic islets. However, adoption of this strategy is limited by the toxicity of standard treatments that enable donor hematopoietic cell engraftment. Here, we address these concerns with a non-myeloablative conditioning regimen that enables hematopoietic chimerism and allograft tolerance across fully mismatched major histocompatibility complex (MHC) barriers. Treatment with an alphaCD117 antibody, targeting c-Kit, administered with Tcell-depleting antibodies and low-dose radiation permits durable multi-lineage chimerism in immunocompetent mice following hematopoietic cell transplant. In diabetic mice, co-transplantation of donor-matched islets and hematopoietic cells durably corrects diabetes without chronic immunosuppression and no appreciable evidence of graft-versus-host disease (GVHD). Donor-derived thymic antigen-presenting cells and host-derived peripheral regulatory Tcells are likely mediators of allotolerance. These findings provide the foundation for safer bone marrow conditioning and cell transplantation regimens to establish hematopoietic chimerism and isletallograft tolerance.
View details for DOI 10.1016/j.celrep.2022.111615
View details for PubMedID 36351397