Topical vanadate improves tensile strength and alters collagen organization of excisional wounds in a mouse model. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society Lintel, H., Abbas, D. B., Mackay, D. J., Griffin, M., Lavin, C. V., Berry, C. E., Guardino, N. J., Guo, J. L., Momeni, A., Mackay, D. R., Longaker, M. T., Wan, D. C. 2022

Abstract

Wound dehiscence, oftentimes a result of the poor tensile strength of early healing wounds, is a significant threat to the postoperative patient, potentially causing life-threatening complications. Vanadate, a protein tyrosine phosphatase inhibitor, has been shown to alter the organization of deposited collagen in healing wounds and significantly improve the tensile strength of incisional wounds in rats. In this study, we sought to explore the effects of locally administered vanadate on tensile strength and collagen organization in both the early and remodeling phases of excisional wound healing in a murine model. Wild-type mice underwent stented excisional wounding on their dorsal skin and were divided equally into three treatment conditions: vanadate injection, saline injection control, and an untreated control. Tensile strength testing, in vivo suction Cutometer analysis, gross wound measurements, and histologic analysis were performed during healing, immediately upon wound closure, and after four weeks of remodeling. We found that vanadate treatment significantly increased the tensile strength of wounds and their stiffness relative to control wounds, both immediately upon healing and into the remodeling phase. Histologic analysis revealed that these biomechanical changes were likely the result of increased collagen deposition and an altered collagen organization composed of thicker and distinctly organized collagen bundles. Given the risk that dehiscence poses to all operative patients, vanadate presents an interesting therapeutic avenue to improve the strength of post-operative wounds and unstable chronic wounds in order to reduce the risk of dehiscence.

View details for DOI 10.1111/wrr.13062

View details for PubMedID 36484112