APOE effects on regional tau in preclinical Alzheimer's disease. Molecular neurodegeneration Young, C. B., Johns, E., Kennedy, G., Belloy, M. E., Insel, P. S., Greicius, M. D., Sperling, R. A., Johnson, K. A., Poston, K. L., Mormino, E. C., Alzheimers Disease Neuroimaging Initiative, A4 Study Team 2023; 18 (1): 1

Abstract

BACKGROUND: APOE variants are strongly associated with abnormal amyloid aggregation and additional direct effects of APOE on tau aggregation are reported in animal and human cell models. The degree to which these effects are present in humans when individuals are clinically unimpaired (CU) but have abnormal amyloid (Abeta+) remains unclear.METHODS: We analyzed data from CU individuals in the Anti-Amyloid Treatment in Asymptomatic AD (A4) and Longitudinal Evaluation of Amyloid Risk and Neurodegeneration (LEARN) studies. Amyloid PET data were available for 4486 participants (3163 Abeta-, 1323 Abeta+) and tau PET data were available for a subset of 447 participants (55 Abeta-, 392 Abeta+). Linear models examined APOE (number of e2 and e4 alleles) associations with global amyloid and regional tau burden in medial temporal lobe (entorhinal, amygdala) and early neocortical regions (inferior temporal, inferior parietal, precuneus). Consistency of APOE4 effects on regional tau were examined in 220 Abeta+CU and mild cognitive impairment (MCI) participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI).RESULTS: APOE2 and APOE4 were associated with lower and higher amyloid positivity rates, respectively. Among Abeta+CU, e2 and e4 were associated with reduced (-12 centiloidsper allele) and greater (+15 centiloidsper allele) continuous amyloid burden, respectively. APOE2 was associated with reduced regional tau in all regions (-0.05 to -0.09 SUVR per allele), whereas APOE4 was associated with greater regional tau (+0.02 to +0.07 SUVR per allele). APOE differences were confirmed by contrasting e3/e3 with e2/e3 and e3/e4. Mediation analyses among Abeta+s showed that direct effects of e2 on regional tau were present in medial temporal lobe and early neocortical regions, beyond an indirect pathway mediated by continuous amyloid burden. For e4, direct effects on regional tau were only significant in medial temporal lobe. The magnitude of protective e2 effects on regional tau was consistent across brain regions, whereas detrimental e4 effects were greatest in medial temporal lobe. APOE4 patterns were confirmed in Abeta+ADNI participants.CONCLUSIONS: APOE influences early regional tau PET burden, above and beyond effects related to cross-sectional amyloid PET burden. Therapeutic strategies targeting underlying mechanisms related to APOE may modify tau accumulation among Abeta+individuals.

View details for DOI 10.1186/s13024-022-00590-4

View details for PubMedID 36597122