Automated MRI Field of View Prescription from Region of Interest Prediction by Intra-Stack Attention Neural Network. Bioengineering (Basel, Switzerland) Lei, K., Syed, A. B., Zhu, X., Pauly, J. M., Vasanawala, S. V. 2023; 10 (1)

Abstract

Manual prescription of the field of view (FOV) by MRI technologists is variable and prolongs the scanning process. Often, the FOV is too large or crops critical anatomy. We propose a deep learning framework, trained by radiologists' supervision, for automating FOV prescription. An intra-stack shared feature extraction network and an attention network are used to process a stack of 2D image inputs to generate scalars defining the location of a rectangular region of interest (ROI). The attention mechanism is used to make the model focus on a small number of informative slices in a stack. Then, the smallest FOV that makes the neural network predicted ROI free of aliasing is calculated by an algebraic operation derived from MR sampling theory. The framework's performance is examined quantitatively with intersection over union (IoU) and pixel error on position and qualitatively with a reader study. The proposed model achieves an average IoU of 0.867 and an average ROI position error of 9.06 out of 512 pixels on 80 test cases, significantly better than two baseline models and not significantly different from a radiologist. Finally, the FOV given by the proposed framework achieves an acceptance rate of 92% from an experienced radiologist.

View details for DOI 10.3390/bioengineering10010092

View details for PubMedID 36671663