Novel left ventricular mechanical index in pulmonary arterial hypertension. Pulmonary circulation Ichimura, K., Santana, E. J., Kuznetsova, T., Cauwenberghs, N., Sabovcik, F., Chun, L., Francisco, N. L., Kheyfets, V. O., Salerno, M., Zamanian, R. T., Spiekerkoetter, E., Haddad, F. 2023; 13 (2): e12216

Abstract

Ventricular interdependence plays an important role in pulmonary arterial hypertension (PAH). It can decrease left ventricular (LV) longitudinal strain (LVLS) and lead to a leftward displacement ("transverse shortening") of the interventricular septum (sTS). For this study, we hypothesized the ratio of LVLS/sTS would be a sensitive marker of systolic ventricular interactions in PAH. In a cross-sectional cohort of patients with PAH (n?=?57) and matched controls (n?=?57), we quantified LVLS and septal TS in the amplitude and time domain. We then characterized LV phenotypes using upset plots, ventricular interactions using network analysis, and longitudinal analysis in a representative cohort of 45 patients. We also measured LV metrics in mice subjected to pulmonary arterial banding (PAB) using a 7?T magnetic resonance imaging at baseline, Week 1, and Week 7 post-PAB (N?=?9). Patients with PAH had significantly reduced absolute LVLS (15.4?±?3.4 vs. 20.1?±?2.3%, p?

View details for DOI 10.1002/pul2.12216

View details for PubMedID 37063750

View details for PubMedCentralID PMC10103585