Attenuating Chronic Fibrosis: Decreasing Foreign Body Response with Acellular Dermal Matrix. Tissue engineering. Part B, Reviews Liang, N. E., Griffin, M., Berry, C. E., Parker, J. B., Downer, M. A., Wan, D. C., Longaker, M. T. 2023

Abstract

Surgical implants are increasingly used across multiple medical disciplines, with applications ranging from tissue reconstruction to improving compromised organ and limb function. Despite their significant potential for improving health and quality of life, biomaterial implant function is severely limited by the body's immune response to its presence: this is known as the foreign body response and is characterized by chronic inflammation and fibrotic capsule formation. This response can result in life-threatening sequelae such as implant malfunction, superimposed infection and associated vessel thrombosis, in addition to soft tissue disfigurement. Patients may require frequent medical visits, as well as repeated invasive procedures, increasing the burden on an already strained healthcare system. Currently, the foreign body response and the cells and molecular mechanisms that mediate it are poorly understood. With applications across a wide array of surgical specialties, acellular dermal matrix has emerged as a potential solution to the fibrotic reaction seen with FBR. Though the mechanisms by which acellular dermal matrix decreases chronic fibrosis remain to be clearly characterized, animal studies across diverse surgical models point to its biomimetic properties that facilitate decreased periprosthetic inflammation and improved host cell incorporation.

View details for DOI 10.1089/ten.TEB.2023.0060

View details for PubMedID 37212342