Seq-ing the SINEs of central nervous system tumors in cerebrospinal fluid. Cell reports. Medicine Douville, C., Curtis, S., Summers, M., Azad, T. D., Rincon-Torroella, J., Wang, Y., Mattox, A., Avigdor, B., Dudley, J., Materi, J., Raj, D., Nair, S., Bhanja, D., Tuohy, K., Dobbyn, L., Popoli, M., Ptak, J., Nehme, N., Silliman, N., Blair, C., Judge, K., Gallia, G. L., Groves, M., Jackson, C. M., Jackson, E. M., Laterra, J., Lim, M., Mukherjee, D., Weingart, J., Naidoo, J., Koschmann, C., Smith, N., Schreck, K. C., Pardo, C. A., Glantz, M., Holdhoff, M., Kinzler, K. W., Papadopoulos, N., Vogelstein, B., Bettegowda, C. 2023: 101148

Abstract

It is often challenging to distinguish cancerous from non-cancerous lesions in the brain using conventional diagnostic approaches. We introduce an analytic technique called Real-CSF (repetitive element aneuploidy sequencing in CSF) to detect cancers of the central nervous system from evaluation of DNA in the cerebrospinal fluid (CSF). Short interspersed nuclear elements (SINEs) are PCR amplified with a single primer pair, and the PCR products are evaluated by next-generation sequencing. Real-CSF assesses genome-wide copy-number alterations as well as focal amplifications of selected oncogenes. Real-CSF was applied to 280 CSF samples and correctly identified 67% of 184 cancerous and 96% of 96 non-cancerous brain lesions. CSF analysis was considerably more sensitive than standard-of-care cytology and plasma cell-free DNA analysis in the same patients. Real-CSF therefore has the capacity to be used in combination with other clinical, radiologic, and laboratory-based data to inform the diagnosis and management of patients with suspected cancers of the brain.

View details for DOI 10.1016/j.xcrm.2023.101148

View details for PubMedID 37552989