New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Study of ß1-transferrin and ß2-transferrin using microprobe-capture in-emitter elution and high-resolution mass spectrometry.
Study of ß1-transferrin and ß2-transferrin using microprobe-capture in-emitter elution and high-resolution mass spectrometry. Scientific reports Luo, R. Y., Pfaffroth, C., Yang, S., Hoang, K., Yeung, P. S., Zehnder, J. L., Shi, R. Z. 2023; 13 (1): 14974Abstract
Cerebrospinal fluid (CSF) leak can be diagnosed in clinical laboratories by detecting a diagnostic marker ß2-transferrin (ß2-Tf) in secretion samples. ß2-Tf and the typical transferrin (Tf) proteoform in serum, ß1-transferrin (ß1-Tf), are Tf glycoforms. An innovative affinity capture technique for sample preparation, called microprobe-capture in-emitter elution (MPIE), was incorporated with high-resolution mass spectrometry (HR-MS) to study the Tf glycoforms and the primary structures of ß1-Tf and ß2-Tf. To implement MPIE, an analyte is first captured on the surface of a microprobe, and subsequently eluted from the microprobe inside an electrospray emitter. The capture process is monitored in real-time via next-generation biolayer interferometry (BLI). When electrospray is established from the emitter to a mass spectrometer, the analyte is immediately ionized via electrospray ionization (ESI) for HR-MS analysis. Serum, CSF, and secretion samples were analyzed using MPIE-ESI-MS. Based on the MPIE-ESI-MS results, the primary structures of ß1-Tf and ß2-Tf were elucidated. As Tf glycoforms, ß1-Tf and ß2-Tf share the amino acid sequence but contain varying N-glycans: (1) ß1-Tf, the major serum-type Tf, has two G2S2 N-glycans on Asn413 and Asn611; and (2) ß2-Tf, the major brain-type Tf, has an M5 N-glycan on Asn413 and a G0FB N-glycan on Asn611. The resolving power of the innovative MPIE-ESI-MS method was demonstrated in the study of ß2-Tf as well as ß1-Tf. Knowing the N-glycan structures on ß2-Tf allows for the design of more novel test methods for ß2-Tf in the future.
View details for DOI 10.1038/s41598-023-42064-7
View details for PubMedID 37696850
View details for PubMedCentralID 345148