New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Links between brain neuroimaging and blood inflammatory markers in urological chronic pelvic pain syndrome.
Links between brain neuroimaging and blood inflammatory markers in urological chronic pelvic pain syndrome. Physiology & behavior Martucci, K. T., Karshikoff, B., Mackey, S. C. 2023: 114358Abstract
Urological chronic pelvic pain syndrome (UCPPS) is a debilitating painful condition with unclear etiology. Prior researchers have indicated that compared to healthy controls, patients with UCPPS demonstrated altered brain activity. Researchers have also shown that in UCPPS, several blood inflammatory markers relate to clinical variables of pain, fatigue, and pain widespreadness. However, how altered brain function in patients with UCPPS relates to blood inflammation remains unknown. To extend and connect prior findings of altered brain function and inflammatory factors in UCPPS, we conducted a secondary analysis of data from a cohort of UCPPS patients (N?=?29) and healthy controls (N?=?31) who provided both neuroimaging and blood data (National Institute of Health MAPP Research Network publicly available dataset). In our present study, we aimed to evaluate relationships between a priori-defined brain neuroimaging markers and inflammatory factors of interest and their relationships to pain-psychological variables. We hypothesized that two brain alterations of interest (i.e., PCC - left hippocampus functional connectivity and PCC - bilateral amygdala functional connectivity) would be correlated with four cytokine markers of interest: interleukin (IL) - 6, tumor necrosis factor-alpha (TNF-a), IL-8, and granulocyte-macrophage colony-stimulating factor (GM-CSF). In the UCPPS cohort, we identified a significant PCC - left hippocampus functional connectivity relationship with IL-6 (p?=?0.0044). Additionally, in the UCPPS cohort, we identified a PCC - amygdala functional connectivity relationship with GM-CSF which did not meet our model's threshold for statistical significance (p?=?0.0665). While these data are preliminary and cross-sectional, our findings suggest connections between brain function and levels of low-grade systemic inflammation in UCPPS. Thus, while further study is needed, our data indicate the potential for advancing the understanding of how brain functional circuits may relate to clinical symptoms and systemic inflammation.
View details for DOI 10.1016/j.physbeh.2023.114358
View details for PubMedID 37769862