Skip to main content
Multi-omics analysis of mucosal and systemic immunity to SARS-CoV-2 after birth. Cell Wimmers, F., Burrell, A. R., Feng, Y., Zheng, H., Arunachalam, P. S., Hu, M., Spranger, S., Nyhoff, L. E., Joshi, D., Trisal, M., Awasthi, M., Bellusci, L., Ashraf, U., Kowli, S., Konvinse, K. C., Yang, E., Blanco, M., Pellegrini, K., Tharp, G., Hagan, T., Chinthrajah, R. S., Nguyen, T. T., Grifoni, A., Sette, A., Nadeau, K. C., Haslam, D. B., Bosinger, S. E., Wrammert, J., Maecker, H. T., Utz, P. J., Wang, T. T., Khurana, S., Khatri, P., Staat, M. A., Pulendran, B. 2023

Abstract

The dynamics of immunity to infection in infants remain obscure. Here, we used a multi-omics approach to perform a longitudinal analysis of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infants and young children by analyzing blood samples and weekly nasal swabs collected before, during, and after infection with Omicron and non-Omicron variants. Infection stimulated robust antibody titers that, unlike in adults, showed no sign of decay for up to 300 days. Infants mounted a robust mucosal immune response characterized by inflammatory cytokines, interferon (IFN) a, and T helper (Th) 17 and neutrophil markers (interleukin [IL]-17, IL-8, and CXCL1). The immune response in blood was characterized by upregulation of activation markers on innate cells, no inflammatory cytokines, but several chemokines and IFNa. The latter correlated with viral load and expression of interferon-stimulated genes (ISGs) in myeloid cells measured by single-cell multi-omics. Together, these data provide a snapshot of immunity to infection during the initial weeks and months of life.

View details for DOI 10.1016/j.cell.2023.08.044

View details for PubMedID 37776858