Overall Survival Prediction in Stereotactic Radiosurgery Patients with Glioblastoma Via a Deep-Learning Approach. International journal of radiation oncology, biology, physics Yang, Z., Zamarud, A., Marianayagam, N., Park, D., Yener, U., Soltys, S. G., Chang, S. D., Meola, A., Lu, W., Gu, X. 2023; 117 (2S): e159

Abstract

PURPOSE/OBJECTIVE(S): Accurate and automated early survival prediction is critical for glioblastoma (GBM) patients as their poor prognosis requires timely treatment decision-making. We have developed a deep learning (DL)-based GBM overall survival (OS) prediction model based on a multi-institutional public dataset using only pre-operative basic structural multi-parametric magnetic resonance images (MRIs). The purpose of this study is to evaluate this DL-based OS prediction model with an institutional stereotactic radiosurgery (SRS) clinical trial dataset.MATERIALS/METHODS: The task of this study is to classify GBM patients into 3 OS classes: long-survivors (>15 months), mid-survivors (between 10 and 15 months) and short-survivors (< 10 months). The proposed OS prediction model is an ensemble of a ResNet-based classifier and a K-NN classifier. The ResNet-based classifier is trained in a Siamese fashion to explore inter-class differences. During testing, training sample features are implemented with a K-NN classifier to ensemble with the ResNet-based classifier. A public dataset from Medical Image Computing and Computer Assisted Intervention (MICCAI) Brain Tumor Segmentation (BraTS) challenge 2020 (235 patients) were used for model establishing and initial validation. Then the validated model was evaluated on 19 GBM patients from an institutional SRS clinical trial. Each data entry consists of pre-operative basic structural multi-parametric MRIs and survival days, as well as patient ages for BraTS data and basic clinical characteristics for institutional data. GBM sub-regions, including contrast-enhancing tumor, peri-tumoral edema, and necrotic/non-enhancing tumor core, were segmented in the multi-parametric MRIs by an in-house DL model for both datasets. The OS prediction model was trained on 90% of the segmented BraTS data and validated on the rest 10%, then further evaluated on the institutional data. The model performance was assessed by prediction accuracy (ACC) and the area under the curve (AUC).RESULTS: For this 3-class OS classification task, our DL-based prediction model achieved an ACC of 65.22% and an AUC of 0.81 on the BraTS dataset compared with the top-ranked result from the BraTS challenge 2020 (Rank 1st: ACC 61.7%), and an ACC of 52.63% and an AUC of 0.69 on the institutional dataset. Further analysis of the institutional dataset found that the predicted OS class had a statistically significant correlation with treatment volume (p?=?0.012) and age (p?=?0.006), which matches the analysis that the patients' ground truth OS class is statistical significantly correlated with treatment volume (p?=?0.045).CONCLUSION: Our DL-based OS prediction model for GBM using basic structural multi-parametric pre-operative MRIs has demonstrated promising performance in both public and institutional dataset with minimal manual processing requirements. This OS prediction model can be potentially applied to assist timely clinical decision-making.

View details for DOI 10.1016/j.ijrobp.2023.06.988

View details for PubMedID 37784752