Longitudinal investigation of aortic dissection in mice with computational fluid dynamics. Computer methods in biomechanics and biomedical engineering Bäumler, K., Phillips, E. H., Grande Gutiérrez, N., Fleischmann, D., Marsden, A. L., Goergen, C. J. 2023: 1-14

Abstract

Predicting late adverse events in aortic dissections is challenging. One commonly observed risk factor is partial thrombosis of the false lumen. In this study we investigated false lumen thrombus progression over 7 days in four mice with angiotensin II-induced aortic dissection. We performed computational fluid dynamic simulations with subject-specific boundary conditions from velocity and pressure measurements. We investigated endothelial cell activation potential, mean velocity, thrombus formation potential, and other hemodynamic factors. Our findings support the hypothesis that flow stagnation is the predominant hemodynamic factor driving a large thrombus ratio in false lumina, particularly those with a single fenestration.

View details for DOI 10.1080/10255842.2023.2274281

View details for PubMedID 37897230