Quantitative estimate of cognitive resilience and its medical and genetic associations. Alzheimer's research & therapy Phongpreecha, T., Godrich, D., Berson, E., Espinosa, C., Kim, Y., Cholerton, B., Chang, A. L., Mataraso, S., Bukhari, S. A., Perna, A., Yakabi, K., Montine, K. S., Poston, K. L., Mormino, E., White, L., Beecham, G., Aghaeepour, N., Montine, T. J. 2023; 15 (1): 192

Abstract

We have proposed that cognitive resilience (CR) counteracts brain damage from Alzheimer's disease (AD) or AD-related dementias such that older individuals who harbor neurodegenerative disease burden sufficient to cause dementia remain cognitively normal. However, CR traditionally is considered a binary trait, capturing only the most extreme examples, and is often inconsistently defined.This study addressed existing discrepancies and shortcomings of the current CR definition by proposing a framework for defining CR as a continuous variable for each neuropsychological test. The linear equations clarified CR's relationship to closely related terms, including cognitive function, reserve, compensation, and damage. Primarily, resilience is defined as a function of cognitive performance and damage from neuropathologic damage. As such, the study utilized data from 844 individuals (age?=?79?±?12, 44% female) in the National Alzheimer's Coordinating Center cohort that met our inclusion criteria of comprehensive lesion rankings for 17 neuropathologic features and complete neuropsychological test results. Machine learning models and GWAS then were used to identify medical and genetic factors that are associated with CR.CR varied across five cognitive assessments and was greater in female participants, associated with longer survival, and weakly associated with educational attainment or APOE e4 allele. In contrast, damage was strongly associated with APOE e4 allele (P value?

View details for DOI 10.1186/s13195-023-01329-z

View details for PubMedID 37926851

View details for PubMedCentralID 6410486