New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Increasing DIEA Perforator Detail in 3D Photorealistic Volume Rendering Visualizations with Skin-masking and Cinematic Anatomy.
Increasing DIEA Perforator Detail in 3D Photorealistic Volume Rendering Visualizations with Skin-masking and Cinematic Anatomy. Plastic and reconstructive surgery Necker, F. N., Cholok, D. J., Shaheen, M. S., Fischer, M. J., Gifford, K., El Chemaly, T., Leuze, C. W., Scholz, M., Daniel, B. L., Momeni, A. 2024Abstract
Preoperative CT angiography (CTA) is increasingly performed prior to perforator flap-based reconstruction. However, radiological 2D thin-slices do not allow for intuitive interpretation and translation to intraoperative findings. 3D volume rendering has been used to alleviate the need for mental 2D-to-3D abstraction. Even though volume rendering allows for a much easier understanding of anatomy, it currently has limited utility as the skin obstructs the view of critical structures. Using free, open-source software, we introduce a new skin-masking technique that allows surgeons to easily create a segmentation mask of the skin that can later be used to toggle the skin on and off. Additionally, the mask can be used in other rendering applications. We use Cinematic Anatomy for photorealistic volume rendering and interactive exploration of the CTA with and without skin. We present results from using this technique to investigate perforator anatomy in deep inferior epigastric perforator flaps and demonstrate that the skin-masking workflow is performed in less than 5 minutes. In Cinematic Anatomy, the view onto the abdominal wall and especially onto perforators becomes significantly sharper and more detailed when no longer obstructed by the skin. We perform a virtual, partial muscle dissection to show the intramuscular and submuscular course of the perforators. The skin-masking workflow allows surgeons to improve arterial and perforator detail in volume renderings easily and quickly by removing skin and could alternatively also be performed solely using open-source and free software. The workflow can be easily expanded to other perforator flaps without the need for modification.
View details for DOI 10.1097/PRS.0000000000011359
View details for PubMedID 38351515