A functional genomic framework to elucidate novel causal non-alcoholic fatty liver disease genes. medRxiv : the preprint server for health sciences Saliba-Gustafsson, P., Justesen, J. M., Ranta, A., Sharma, D., Bielczyk-Maczynska, E., Li, J., Najmi, L. A., Apodaka, M., Aspichueta, P., Björck, H. M., Eriksson, P., Franco-Cereceda, A., Gloudemans, M., Mujica, E., den Hoed, M., Assimes, T. L., Quertermous, T., Carcamo-Orive, I., Park, C. Y., Knowles, J. W. 2024

Abstract

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver pathology in western countries, with serious public health consequences. Efforts to identify causal genes for NAFLD have been hampered by the relative paucity of human data from gold-standard magnetic resonance quantification of hepatic fat. To overcome insufficient sample size, genome-wide association studies using NAFLD surrogate phenotypes have been used, but only a small number of loci have been identified to date. In this study, we combined GWAS of NAFLD composite surrogate phenotypes with genetic colocalization studies followed by functional in vitro screens to identify bona fide causal genes for NAFLD.We used the UK Biobank to explore the associations of our novel NAFLD score, and genetic colocalization to prioritize putative causal genes for in vitro validation. We created a functional genomic framework to study NAFLD genes in vitro using CRISPRi. Our data identify VKORC1, TNKS, LYPLAL1 and GPAM as regulators of lipid accumulation in hepatocytes and suggest the involvement of VKORC1 in the lipid storage related to the development of NAFLD.Complementary genetic and genomic approaches are useful for the identification of NAFLD genes. Our data supports VKORC1 as a bona fide NAFLD gene. We have established a functional genomic framework to study at scale putative novel NAFLD genes from human genetic association studies.

View details for DOI 10.1101/2024.02.03.24302258

View details for PubMedID 38352379

View details for PubMedCentralID PMC10863038