New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Sensitive detection of clonal immunoglobulin rearrangements in frozen and paraffin embedded tissues by polymerase chain reaction heteroduplex analysis
Sensitive detection of clonal immunoglobulin rearrangements in frozen and paraffin embedded tissues by polymerase chain reaction heteroduplex analysis DIAGNOSTIC MOLECULAR PATHOLOGY Ranheim, E. A., Jones, C. D., Zehnder, J. L. 2000; 9 (4): 177-183Abstract
Molecular detection of a clonal population of B or T cells through analysis of rearranged antigen receptor genes is an essential adjunct to the morphologic, flow cytometric, and immunohistochemical evaluation of tissue specimens for the presence of leukemia or lymphoma. Combining polymerase chain reaction (PCR) with heteroduplex annealing and polyacrylamide gel electrophoresis (PAGE) has been used to detect clonal T-cell receptor rearrangements, particularly in skin biopsy specimens. The authors have developed a similar PCR heteroduplex assay for detection of clonal VDJ immunoglobulin gene rearrangements using two sets of primers based on relatively conserved consensus regions in the J(H) and framework I and 2 regions of the immunoglobulin heavy chain V region gene. This method is able to detect a clonal rearrangement when the clone comprises as little as 1% of the population in a polyclonal B-cell background. It may be used on fresh, frozen, or paraffin-embedded tissue and detects a clonal population in a majority of lymphoma subtypes. Compared with conventional PCR analysis, this method requires only a short additional cycle of denaturation and slow renaturation before PAGE. Interpretation is simplified as the clonal PCR product migrates away from the polyclonal background products.
View details for Web of Science ID 000165556700001
View details for PubMedID 11129440