New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat
The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat BIOMATERIALS Yu, J., Du, K. T., fang, q., Gu, Y., Mihardja, S. S., Sievers, R. E., Wu, J. C., Lee, R. J. 2010; 31 (27): 7012-7020Abstract
The combination of scaffold material and cell transplantation therapy has been extensively investigated in cardiac tissue engineering. However, many polymers are difficult to administer or lack the structural integrity to restore LV function. Additionally, polymers need to be biological friendly, favorably influence the microenvironment and increase stem cell retention and survival. This study determined whether human mesenchymal stem cells (hMSCs) encapsulated in RGD modified alginate microspheres are capable of facilitating myocardial repair. The in vitro study of hMSCs demonstrated that the RGD modified alginate can improve cell attachment, growth and increase angiogenic growth factor expression. Alginate microbeads and hMSCs encapsulated in microbeads successfully maintained LV shape and prevented negative LV remodeling after an MI. Cell survival was significantly increased in the encapsulated hMSC group compared with PBS control or cells alone. Microspheres, hMSCs, and hMSCs in microspheres groups reduced infarct area and enhanced arteriole formation. In summary, surface modification and microencapsulation techniques can be combined with cell transplantation leading to the maintenance of LV geometry, preservation of LV function, increase of angiogenesis and improvement of cell survival.
View details for DOI 10.1016/j.biomaterials.2010.05.078
View details for Web of Science ID 000280616300013
View details for PubMedID 20566215