Effects of orthopedic polymer particles on chemotaxis of macrophages and mesenchymal stem cells. Journal of biomedical materials research. Part A Huang, Z., Ma, T., Ren, P., Smith, R. L., Goodman, S. B. 2010; 94 (4): 1264-1269


Wear particles generated from total joint arthroplasty (TJA) stimulate macrophages to release chemokines. The role of chemokines released from wear particle-stimulated macrophages on the migration of macrophages and osteoprogenitor cells in vitro has not been elucidated. In this study, we challenged murine macrophages (RAW 264.7) with clinically relevant polymethyl methacrylate (PMMA, 1-10 microm) and ultra high molecular weight polyethylene (UHMWPE, 2-3 microm) particles. The chemotactic effects of the conditioned media (CM) were tested in vitro using human macrophages (THP-1) and human mesenchymal stem cells (MSCs) as the migrating cells. CM collected from both particle types had a chemotactic effect on human macrophages, which could be eliminated by monocyte chemotactic protein-1 (MCP-1) neutralizing antibody. Blocking the CCR1 receptor eliminated the chemotactic effect, while CCR2 antibody only partially decreased THP-1 cell migration. CM from PMMA but not UHMWPE-exposed macrophages led to chemotaxis of MSCs; this effect could be eliminated by macrophage inflammatory protein-1 alpha (MIP-1alpha) neutralizing antibody. Neither CCR1 nor CCR2 blocking antibodies showed an effect on the migration of MSCs. Chemokines released by macrophages stimulated by wear particles can have an effect on the migration of macrophages and MSCs. This effect seems to be dependent on the particle type, and may be modulated by MCP-1 and MIP-1alpha, however, more than one chemokine may be necessary for chemotaxis.

View details for DOI 10.1002/jbm.a.32803

View details for PubMedID 20694994