Pancreatic Tumor Motion on a Single Planning 4D-CT Does Not Correlate With Intrafraction Tumor Motion During Treatment AMERICAN JOURNAL OF CLINICAL ONCOLOGY-CANCER CLINICAL TRIALS Minn, A. Y., Schellenberg, D., Maxim, P., Suh, Y., McKenna, S., Cox, B., Dieterich, S., Xing, L., Graves, E., Goodman, K. A., Chang, D., Koong, A. C. 2009; 32 (4): 364-368

Abstract

To quantify pancreas tumor motion on both a planning 4D-CT and during a single fraction treatment using the CyberKnife linear accelerator and Synchrony respiratory tracking software, and to investigate whether a single 4D-CT study is reliable for determining radiation treatment margins for patients with locally advanced pancreas cancer.Twenty patients underwent fiducial placement, biphasic pancreatic protocol CT scan and 4D-CT scan in the treatment position while free-breathing. Patients were then treated with a single 25 Gy fraction of stereotactic body radiotherapy. Predicted pancreas motion in the superior-inferior (SI), left-right (LR), and anterior-posterior (AP) directions was calculated from the maximum inspiration and maximum expiration 4D-CT scan. For CyberKnife treatments, mean respiratory cycle motion and maximum respiratory cycle motion was determined in the SI, LR, and AP directions.The range of centroid movement based on 4D-CT in the SI, LR, and AP directions were 0.9 to 28.8 mm, 0.1 to 13.7 mm, and 0.2 to 7.6 mm, respectively. During CyberKnife treatment, in the SI direction, the mean motion of the centroid ranged from 0.5 to 12.7 mm. In the LR direction, the mean motion range was 0.4 to 9.4 mm. In the AP direction, the mean motion range was 0.6 to 5.5 mm. The maximum range of movement (mean) during CyberKnife treatment in the SI, LR, and AP directions were 4.5 to 48.8 mm (mean 20.8 mm), 1.5 to 41.3 mm (mean 11.3 mm), and 1.6 to 68.1 mm (mean 13.4 mm), respectively. Neither the maximum or mean motion correlated with the 4D-CT movement.There is substantial respiratory associated motion of pancreatic tumors. The 4D-CT planning scans cannot accurately predict the movement of pancreatic tumors during actual treatment on CyberKnife.

View details for DOI 10.1097/COC.0b013e31818da9e0

View details for PubMedID 19398901